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Using the reflection and the transmission coefficients at the
reference plane T shown in Fig. 1, the equivalent circuit parame-
ters of the T and lattice networks are represented by only
reactances, since a dielectric post is assumed to be lossless.

III. NUMERICAL RESULTS

We take the example given by Marcuvitz [1], Nielsen [2],
Araneta er al. [3], Sahalos and Vafiadis [4], Hsu and Auda [5],
and Leviatan and Sheaffer [6], which computes the scattering
parameters and equivalent network elements as a function of
relative permittivity € for a centered lossless dielectric post of
r/d =0.05 at XA /d =1.4, where d is the width of the rectangular
waveguide, r is the radius of the cylindrical post as shown in Fig.
1, and A is the wavelength in free space. The results obtained
agree well with Leviatan’s [6]. The resonance occurs at € =112.5.

Now we consider the bandpass filter which takes a minimum
of the reflection coefficient R at A /d =1.4 for a centered lossless
dielectric post of »/d = 0.05 and with ¢ =112.5. Fig. 2 shows the
magnitude of the reflection coefficient R by the solid line, where
the frequency is normalized by the cutoff frequency f,. It is found
in this case that the shunt reactance for the T network decreases
with increasing frequency, while the series and cross reactances
for the lattice network increase with increasing frequency. The
series arm resonance occurs at f, /f, =1.42089.

We consider the equivalent lattice circuit, where the series
reactance corresponds to a resonant parallel LC network and the
cross reactance to an inductor. By the relationship between the
original and equivalent circuit reactances, the normalized lumped
lattice circuit is obtained as

L,w,=0.0233 Ciw.=21.26 Lyw, =0.227.

L, and C, are the inductor and the capacitor for the parallel LC
network, respectively, and L, is the inductor for the cross arm.

The magnitude of the reflection coefficient R calculated by the
lumped lattice circuit is shown by the broken line in Fig. 2, and it
agrees well with |R| obtained by the CFBEM.

Next we consider the wavegnide loaded with two posts shown
in Fig. 3, where each post is the same as the previous one and is
located in the middle of the waveguide. If there is no interaction
between the posts, the equivalent circuit of the waveguide may be
assumed to be a chain of previous equivalent circuits connected
in cascade as shown in Fig. 4. C, is the transmission line of
length /.

Fig. 5(a), (b), and (c) shows the magnitudes of the reflection
coefficient R versus f/f with various //d values, where the
solid and broken lines correspond to the results obtained by the
CFBEM and by the equivalent circuit cascaded by previous ones,
respectively. It can be seen that the two agree well at [/d > 0.5.
In the frequency range under consideration, ie., 1.38< f/f, <
1.48, the wavelength in the waveguide A, is 0.52584 > A, /4>
0.4583d. For this example, the reflection coefficient R for the
waveguide loaded with two centered posts shown in Fig. 3 seems
to be evaluated fairly well at /> A, /4 by the equivalent circuit
shown in Fig. 4. For //d less than 0.5, disagreement occurs
because the coupling between the posts was neglected in the
circuit analysis.

and

IV. CONCLUSIONS

We show that some of the lossless dielectric post resonances in
a rectangular waveguide can be physically realized by a lattice
circuit and that the interaction between two posts in a rectangu-
lar waveguide can also be evaluated by the lattice circuit.
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A Statistical Method for Calibrating the Six-Port
Reflectometer Using Nonideal Standards

STEPHEN P. JACHIM, MEMBER, IEEE, AND
W. DARIL GUTSCHER, MEMBER, IEEE

Abstract —This paper presents an alternative method for calibrating the
six-port reflectometer. Through the use of a redundant set of calibration
standards, an estimate of the 11 real calibration constants is determined in
the minimum-mean-squared-error sense. This technique enables the user
to weight the contribution of each standard to the calibration process as a
function of confidence in the quality of that standard. The resulting
computer algorithm is quite straightforward and provides a direct measure
of the tightness of fit between the estimated six-port model and the
observed data.

I. INTRODUCTION

Since their inception, six-port networks have found applica-
tions ranging from power meters to vector network analyzers.
Because of the inherent simplicity and stability of the six-port
network, these applications have also covered the spectrum of
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Fig. 1. A general six-port network configured as a reflectometer, where P;

through P, are power indicators.

metrological precision. The topic of this paper will be limited in
scope to the six-port reflectometer, but the analysis can be
extended to other instruments.

Both iterative and deterministic methods have been presented
in the literature for determining the calibration constants associ-
ated with the six-port reflectometer [1]-[6]. In all cases to date,
however, the parameters of each calibration standard are as-
sumed to be known absolutely, ie., without error. In certain
applications, however, some or all of these standards may be
characterized with limited accuracy. Under such circumstances, a
statistical estimate of the calibration constants can be computed
based on the relative quality of the calibration standards used. A
redundant, or overspecified, set of calibration standards can serve
to reduce the calibration error induced by the use of imperfectly
characterized standards.

II. FUNDAMENTAL THEORY

A general six-port network configured as a reflectometer is
shown in Fig. 1. Hoer [8] first put forth the following defining
equation for a linear network of this type:

4
Y (F+jG)P,

r=-=t._. (1)

HP,

7

10ge

i

where T is the reflection coefficient of the device under test; F,
G,, and H, are the real calibration constants of the six-port
network; and P, is the power measured at ith side arm port.
Owing to the ratio nature of this computation, one of these 12
real constants can be chosen arbitrarily, leaving 11 constants that
uniquely define the response of the reflectometer. Here, it will be

assumed that

H,=1.
Equation (1) can be rewritten as
4 3
Y (F+jG6)P~T Y HP=TP, (2)

=1 1=1

Somlo and Hunter [5] used the above set of 11 equations to
develop an iterative calibration procedure, solving for the 11 real
constants using the known properties of six or seven complex
standards. More recently, they have described a deterministic
calibration method using five complex standards [7]. The proce-
dure under discussion here generates a statistical estimate of the
11 constants in the linear model of (2) through measurement of
an arbitrarily overspecified set of calibration standards. In other
words, the process incorporates measurements of six or more
complex reflection standards. Statistical methods have been de-
scribed by Engen [9] and Herscher and Carroll [10] which utilize
the redundancy inherent in the six-port’ calculations to minimize
the effects of power measurement errors wherein the six-port
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calibration constants are assumed to be known exactly. The work
presented here can be considered complementary to the above in
that statistical estimates of the calibration constants are deter-
mined in the presence of imperfect standards.

III. ANALYTICAL DEVELOPMENT

On the basis of (2), the following weighted squared error € can
be defined [11]:

()]s

-

. .
Y (E+jG)Pf—T* ¥ H P} —T*P

k=1 =1 1=1
1\ m a4 3 2
-(3) £ m|[x F,E*—rkaLRk—rka)
k=1 =1 =1

E)

Note that k is an index, rather than an exponent, where k is
the index of the calibration measurement; m is the total number
of calibration measurements; W, is the weight assigned to the
kth calibration measurement; r* is the real part of the kth
reflection standard; and x* is the imaginary part of the kth
reflection standard.

The object of the procedure is to minimize (3). Thus, setting
the partial derivatives of (3) with respect to each parameter to
zero:

D
)
3

o Y W, PFU* =0, i=1---4
! k=1
Jde i
— =Y W,Prk=0, i=1---4
aGI k=1 '
de m
T > PHr Uk + xFVRy =0, i=1---3 (4)
4 k=1
where
4 3
Z r* 3 HPS—r'Pf
= i=1
4
Z —kaHPk x*Pf. (5)

=1
Now define the followmg augmented matrices:
[OM =[Pf Pf PFPFOOOO —r P} —rkPf —r*Pf]
[7*]=[0000 P} P} P} P} —x*P} —x*P} —x*Pf].
| (6)

Restating (4) with the above definitions,

m
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or, alternatively, using partitioned, augmented matrices,

3 m[[cﬂ[ﬁ%[qé][m]][m

k=1

7 k
=k§1mmk[c:1qk [;k] (8)

where
[ F ] [ P ] [ 0]
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The simultaneous solution of (8) defines a set of calibration
constants that is optimum in the minimum-mean-squared-error
sense. Equation (8) is linear in the variable [ X] with the solution

(1= £ willetio e |

m k
-y VVka[CfICJ‘][;k], m>6. (10)
k=1

This form of the solution lends itself to a convenient algorith-
mic implementation. As the side arm powers are measured for a
given standard, the component matrices on the right-hand side of
(10) are formed, weighted, and summed in succession. This
process continues until all standards have been measured, where-
upon the solution vector is computed.

If the T'* are known to be random variables with a Gaussian
distribution, then the W, should be chosen as

(11)

In some instances in practice, however, the 6, may not be well
known, and an assignment of the W, based on the relative
confidence in the precision of the T'* is appropriate [11]. Once a
solution is calculated, a computation of (3) provides a measure of
the tightness of fit of the estimated parameters in the modé¢l of
(1). This is a useful quantitative measure of the overall quality of
the calibration.

In practice, the values of the chosen reflection standards should
be roughly uniformly distributed around the reflection coefficient
plane. In particular, one or more of the standards should be near
the center of the Smith chart. This load need not be of an
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TABLE I
TEST DATA FROM MEASUREMENTS OF ONE-PORT DEVICES
ON BOTH AN EXPERIMENTAL SIX-PORT REFLECTOMETER
AND A CALIBRATED VECTOR NETWORK ANALYZER
VI -
NOMBER|  READINGS READINGS | MAGRnSE
mag. angle mag. angle

1 0.0039 64.6587 0.0001 150.4931 0.0039

2 0.0149 41.1781 0.0131 31.3281 0.0030

3 0.0112 46.5987 0.0084 36.5285 0 0033
4 0.0084 63.8371 0.0052 59.1994 0.0032

s 0.0129 88.0281 0.0113 94.7353 00021

6 0.0189 69.0704 0.0166 68.4408 0.0022

7 0.0175 60.1377 0.0158 58.2955 0.0020

8 0.9813 50.9346 0.987% 51.2071 0.0080

9 1.0025 -1.4789 1.0001 -1.6681 0.0041
10 0.9839 ~7.0473 0.9892 -7.4213 0.0083
11 0.9931  -68.3367 0.988%  -68.1976 0.0053
12 09967 -130.0411 | 0.9850 -129.2706 00177
13 0.9682 170 9233 0.978% 170.6669 0.0115
14 0.9850  179.8825 1.0000 179.9746 0.0151
15 0.9612  109.9447 0.975& 110.7189 0.0196
16 0.7852  -15.4009 0.7888  -14.4742 0.0132
17 0.7844  -74.6954 0.7834 -74.6767 0.0010
18 0.7687 -135.2450 | 0.7794 -136.3047 0.0178
19 0.7924 163.7383 0.779% 163.0486 0.0162
20 0.7577 103.6535 0.779¢ 104.1699 0.0232
21 0.7690 44 6428 0.7804 45.3241 0.0147
22 0.4879  ~12 4660 0.4888  -119930 0.0041
23 0.4787  -72.8856 04787  ~72.0980 0 0066
24 0.4788  -134.5334 0.4751  -133.9441 0.0061
25 0.4770 164.0440 0.4807 165.1381 0.0099
26 0.4826 105.6583 0.4859 106.1331 0.0052
27 0.4880 47.5404 0.4871 47.6223 0.0011
28 0.2628 -8.5379 0.2701 -8.4530 0.0073
29 0.2517  -69.3497 0.2579  -68.4522 0.0074
30 0.2616 ~1335310 § 02545 ~131.0900 00131
31 0.2630 168 0413 02619 167.0962 0 0045
32 0.2800 108.8979 0.2696 107.9918 0.0113
33 0 2806 52.3988 0.2718 50 5351 00126

RMS DIFFERENCE MAGNITUDE = 0.0105

extremely high quality as nonideal reflection parameters are
easily entered into the calibration algorithm.

Also, at least one standard should have a reflection magnitude
between 0 and 1 (ie., 0.5) in order to properly define the
mapping of the radial component in the complex plane. Failure
to do so can lead to high error sensitivity in the intermediate
zone. The requirement of this standard is a recognized drawback
of this calibration technique, the significance of which will de-
pend on the application. This intermediate reflection standard
can be realized either with a matched attenuator followed by a
short or with a quarter-wave section of mismatched line followed
by a load. In either case, nonideal reflection parameters are easily
accommodated.

[V. EXPERIMENTAL RESULTS

The development of this calibration procedure was driven by
the need to implement a six-port reflectometer in a 6.125-in EIA
rigid line with a mainline peak power level of over 1 MW.
Precision calculable standards are unavailable in this medium.
Therefore, a set of offset shorts, loads, and mismatches will be
fabricated and characterized as transfer standards.

In order to test the calibration procedure described here, a
low-power experiment was performed to simulate the conditions
mentioned above. A set of coaxial delay lines were built with
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standard semirigid coaxial line using nonprecision connectors
and interseries adapters. A short, a load, and 1, 3, and 6 dB
attenuators were used in conjunction with these delay lines to
form transfer standards that were characterized using a cali-
brated vector network analyzer.

The experimental six-port reflectometer was then calibrated
using seven of these transfer standards. A separate set of test
devices, differing in reflection coefficient from the calibration
standards, was then measured on the six-port reflectometer and
on the network analyzer. The test data were compared under the
assumption that the network analyzer would exhibit negligible
measurement error relative to that of the six-port reflectometer.

The experimental data are shown in Table I, wherein the
magnitude of the vector distance between measurements on the
two instruments is listed for each test device. The rms radius of
the error circles over all the data points is 0.0105. This measure
of calibration error is ultimately limited by influences such as
uncertainty in the reflection standard parameters, connector re-
peatability, and measurement system linearity and stability.

V. CONCLUSIONS

A method for calibrating the six-port reflectometer with stan-
dards of limited quality using the method of minimum-mean-
squares has been developed. The solution provided can be imple-
mented in software in a straightforward manner, and a statistical
measure of fitting of the derived parameters can be calculated.
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Results of Phase and Injection Locking
of an Orotron Oscillator

R. W. MCMILLAN, SENIOR MEMBER, IEEE,
D. M. GUILLORY, R. G. HAY, D. E. WORTMAN,
H. DROPKIN, SENIOR MEMBER, IEEE, AND
J. M. COTTON, Jr., MEMBER, IEEE

Abstract —We describe experiments resulting in phase and injection
locking of a 60 GHz orotron oscillator in pulsed and CW modes. The
measured phase-locked phase noise results obtained in CW mode were
—85, —95, and — 105 dBc/Hz at 1, 10, and 100 kHz separation from the
carrier, respectively. The null depths and asymmetry of the first maxima of
the pulsed spectrum for this source were 35 dB and 2 dB (difference
between power levels of first maxima), respectively, operating with a pulse
width of 15 ps. At 3 ps, these quantities become 25 dB and 1 dB,
respectively. The orotron was observed to injection lock in pulsed mode
with an input signal 22 dB below the output power level.

I. INTRODUCTION

The orotron is a linear-beam oscillator whose operation is
based on the Smith—Purcell effect [1], in which radiation is
generated when an electron beam skims the surface of a metallic
diffraction grating. Operation of the orotron has been treated
elsewhere [2], [3] and will not be described herein, except to say
that the orotron may be tuned by varying the cathode-to-grating
voltage, which modulates the electron beam velocity, or by vary-
ing the mirror spacing, which changes the resonant frequency of
the cavity. For phase locking, the phase control signal is fed back
to the grating, so that the physical effect of applying a phase
correction voltage to the grating is to modulate the beam velocity.
The orotron used in the experiments described herein has a
grating period of 0.4 mm.

II. PHASE-LOCKING APPROACHES

Different phase-locking methods were used depending on
whether the orotron was operated in short-pulse, long-pulse, or
CW mode. The tuning coefficient of the orotron was determined
to be 0.2 MHz/V during these measurements, which is a fairly
low value, and this lack of gain must be compensated with higher
gain elsewhere in the loop. In long-pulse and CW modes a digital
phase /frequency detector was used, while in short-pulse mode, a
broad-band ac-coupled analog phase lock was used.

The digital phase lock used to lock the orotron in long-pulse
and CW modes has been described in {4]. Although the linear
circuits [5] give better phase noise performance, digital phase
locks have been found to be more nearly immune to circuit
variables, such as intermediate frequency (IF) levels and external
interference. The approach used was conventional, with part of
the orotron power coupled to a harmonic mixer, where it is
compared in phase to a stable reference oscillator to generate a
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